Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interfacial charging originated from the conductivity decrease of C60 layer in IZO/pentacene/C60/Al organic double-layer solar cells

Identifieur interne : 000087 ( Main/Repository ); précédent : 000086; suivant : 000088

Interfacial charging originated from the conductivity decrease of C60 layer in IZO/pentacene/C60/Al organic double-layer solar cells

Auteurs : RBID : Pascal:14-0045689

Descripteurs français

English descriptors

Abstract

The origin of interfacial charging process in double-layer organic solar cells (OSCs) was studied by using the normal structure of Indium-Zinc-Oxide/pentacene/C60/Al and its inverted double-layer system. Optical electric-field-induced second-harmonic generation (EFISHG) measurement was employed and results suggested that interfacial charging in these two kinds of OSCs led to charge accumulation with opposite charge polarity, owing to the conductivity decrease of C60 layer. Applying the EFISHG measurements to the inverted OSCs also showed that the significant charge accumulation on donor-acceptor interface is responsible for the low I-V performance of the inverted OSCs. Thus, Maxwell-Wagner type interfacial charging, which is governed by the conductivity of C60, can cause the degradation of the I-V performance of OSCs. The protection of C60 layer from the conductivity decrease is a way to improve OSCs performance.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0045689

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Interfacial charging originated from the conductivity decrease of C
<sub>60</sub>
layer in IZO/pentacene/C
<sub>60</sub>
/Al organic double-layer solar cells</title>
<author>
<name>XIANGYU CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Dai" uniqKey="Taguchi D">Dai Taguchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Manaka, Takaaki" uniqKey="Manaka T">Takaaki Manaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iwamoto, Mitsumasa" uniqKey="Iwamoto M">Mitsumasa Iwamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0045689</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0045689 INIST</idno>
<idno type="RBID">Pascal:14-0045689</idno>
<idno type="wicri:Area/Main/Corpus">000181</idno>
<idno type="wicri:Area/Main/Repository">000087</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor center</term>
<term>Charge accumulation</term>
<term>Damaging</term>
<term>Degradation</term>
<term>Donor center</term>
<term>Double layers</term>
<term>Electric field effect</term>
<term>Electron charge distribution</term>
<term>Electrooptical effect</term>
<term>Fullerenes</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Optical field</term>
<term>Organic solar cells</term>
<term>Pentacene</term>
<term>Performance evaluation</term>
<term>Protective coatings</term>
<term>Protective layer</term>
<term>Second harmonic generation</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire organique</term>
<term>Couche double</term>
<term>Champ optique</term>
<term>Effet électrooptique</term>
<term>Effet champ électrique</term>
<term>Génération harmonique 2</term>
<term>Distribution charge électronique</term>
<term>Accumulation charge</term>
<term>Centre donneur</term>
<term>Centre accepteur</term>
<term>Evaluation performance</term>
<term>Dégradation</term>
<term>Endommagement</term>
<term>Revêtement protecteur</term>
<term>Fullerènes</term>
<term>Pentacène</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>Interface</term>
<term>Couche protectrice</term>
<term>8105T</term>
<term>4265K</term>
<term>C60</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The origin of interfacial charging process in double-layer organic solar cells (OSCs) was studied by using the normal structure of Indium-Zinc-Oxide/pentacene/C
<sub>60</sub>
/Al and its inverted double-layer system. Optical electric-field-induced second-harmonic generation (EFISHG) measurement was employed and results suggested that interfacial charging in these two kinds of OSCs led to charge accumulation with opposite charge polarity, owing to the conductivity decrease of C
<sub>60</sub>
layer. Applying the EFISHG measurements to the inverted OSCs also showed that the significant charge accumulation on donor-acceptor interface is responsible for the low I-V performance of the inverted OSCs. Thus, Maxwell-Wagner type interfacial charging, which is governed by the conductivity of C
<sub>60</sub>
, can cause the degradation of the I-V performance of OSCs. The protection of C
<sub>60</sub>
layer from the conductivity decrease is a way to improve OSCs performance.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Interfacial charging originated from the conductivity decrease of C
<sub>60</sub>
layer in IZO/pentacene/C
<sub>60</sub>
/Al organic double-layer solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIANGYU CHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TAGUCHI (Dai)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MANAKA (Takaaki)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IWAMOTO (Mitsumasa)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>162-168</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000501664880240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0045689</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The origin of interfacial charging process in double-layer organic solar cells (OSCs) was studied by using the normal structure of Indium-Zinc-Oxide/pentacene/C
<sub>60</sub>
/Al and its inverted double-layer system. Optical electric-field-induced second-harmonic generation (EFISHG) measurement was employed and results suggested that interfacial charging in these two kinds of OSCs led to charge accumulation with opposite charge polarity, owing to the conductivity decrease of C
<sub>60</sub>
layer. Applying the EFISHG measurements to the inverted OSCs also showed that the significant charge accumulation on donor-acceptor interface is responsible for the low I-V performance of the inverted OSCs. Thus, Maxwell-Wagner type interfacial charging, which is governed by the conductivity of C
<sub>60</sub>
, can cause the degradation of the I-V performance of OSCs. The protection of C
<sub>60</sub>
layer from the conductivity decrease is a way to improve OSCs performance.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20J</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D11G05</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche double</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Double layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Champ optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optical field</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Campo óptico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Effet électrooptique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrooptical effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Efecto electroóptico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Effet champ électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electric field effect</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Efecto campo eléctrico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Distribution charge électronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electron charge distribution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Distribución carga electrónica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accumulation charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Charge accumulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acumulación carga</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Centre accepteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Acceptor center</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Centro aceptor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dégradation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Degradation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Degradación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="GER">
<s0>Schutzueberzug</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Pentacène</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Pentacene</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Pentaceno</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="GER">
<s0>Indiumoxid</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="GER">
<s0>Zinkoxid</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Interface</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Interface</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Grenzflaeche</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche protectrice</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Protective layer</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="GER">
<s0>Schutzschicht</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa protectora</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>C60</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>055</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0045689
   |texte=   Interfacial charging originated from the conductivity decrease of C60 layer in IZO/pentacene/C60/Al organic double-layer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024